Mini Shell
/* Copyright (C) 2002-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Implemented from the specification included in the Intel C++ Compiler
User Guide and Reference, version 9.0. */
#ifndef _MMINTRIN_H_INCLUDED
#define _MMINTRIN_H_INCLUDED
#ifndef __MMX__
# error "MMX instruction set not enabled"
#else
/* The Intel API is flexible enough that we must allow aliasing with other
vector types, and their scalar components. */
typedef int __m64 __attribute__ ((__vector_size__ (8), __may_alias__));
/* Internal data types for implementing the intrinsics. */
typedef int __v2si __attribute__ ((__vector_size__ (8)));
typedef short __v4hi __attribute__ ((__vector_size__ (8)));
typedef char __v8qi __attribute__ ((__vector_size__ (8)));
typedef long long __v1di __attribute__ ((__vector_size__ (8)));
typedef float __v2sf __attribute__ ((__vector_size__ (8)));
/* Empty the multimedia state. */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_empty (void)
{
__builtin_ia32_emms ();
}
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_empty (void)
{
_mm_empty ();
}
/* Convert I to a __m64 object. The integer is zero-extended to 64-bits. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi32_si64 (int __i)
{
return (__m64) __builtin_ia32_vec_init_v2si (__i, 0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_from_int (int __i)
{
return _mm_cvtsi32_si64 (__i);
}
#ifdef __x86_64__
/* Convert I to a __m64 object. */
/* Intel intrinsic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_from_int64 (long long __i)
{
return (__m64) __i;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_m64 (long long __i)
{
return (__m64) __i;
}
/* Microsoft intrinsic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64x_si64 (long long __i)
{
return (__m64) __i;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi64x (long long __i)
{
return (__m64) __i;
}
#endif
/* Convert the lower 32 bits of the __m64 object into an integer. */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_si32 (__m64 __i)
{
return __builtin_ia32_vec_ext_v2si ((__v2si)__i, 0);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_to_int (__m64 __i)
{
return _mm_cvtsi64_si32 (__i);
}
#ifdef __x86_64__
/* Convert the __m64 object to a 64bit integer. */
/* Intel intrinsic. */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_to_int64 (__m64 __i)
{
return (long long)__i;
}
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtm64_si64 (__m64 __i)
{
return (long long)__i;
}
/* Microsoft intrinsic. */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_si64x (__m64 __i)
{
return (long long)__i;
}
#endif
/* Pack the four 16-bit values from M1 into the lower four 8-bit values of
the result, and the four 16-bit values from M2 into the upper four 8-bit
values of the result, all with signed saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_packsswb ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packsswb (__m64 __m1, __m64 __m2)
{
return _mm_packs_pi16 (__m1, __m2);
}
/* Pack the two 32-bit values from M1 in to the lower two 16-bit values of
the result, and the two 32-bit values from M2 into the upper two 16-bit
values of the result, all with signed saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_packssdw ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packssdw (__m64 __m1, __m64 __m2)
{
return _mm_packs_pi32 (__m1, __m2);
}
/* Pack the four 16-bit values from M1 into the lower four 8-bit values of
the result, and the four 16-bit values from M2 into the upper four 8-bit
values of the result, all with unsigned saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pu16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_packuswb ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packuswb (__m64 __m1, __m64 __m2)
{
return _mm_packs_pu16 (__m1, __m2);
}
/* Interleave the four 8-bit values from the high half of M1 with the four
8-bit values from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpckhbw ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhbw (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi8 (__m1, __m2);
}
/* Interleave the two 16-bit values from the high half of M1 with the two
16-bit values from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpckhwd ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhwd (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi16 (__m1, __m2);
}
/* Interleave the 32-bit value from the high half of M1 with the 32-bit
value from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpckhdq ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhdq (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi32 (__m1, __m2);
}
/* Interleave the four 8-bit values from the low half of M1 with the four
8-bit values from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpcklbw ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpcklbw (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi8 (__m1, __m2);
}
/* Interleave the two 16-bit values from the low half of M1 with the two
16-bit values from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpcklwd ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpcklwd (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi16 (__m1, __m2);
}
/* Interleave the 32-bit value from the low half of M1 with the 32-bit
value from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_punpckldq ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckldq (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi32 (__m1, __m2);
}
/* Add the 8-bit values in M1 to the 8-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddb (__m64 __m1, __m64 __m2)
{
return _mm_add_pi8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddw (__m64 __m1, __m64 __m2)
{
return _mm_add_pi16 (__m1, __m2);
}
/* Add the 32-bit values in M1 to the 32-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddd ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddd (__m64 __m1, __m64 __m2)
{
return _mm_add_pi32 (__m1, __m2);
}
/* Add the 64-bit values in M1 to the 64-bit values in M2. */
#ifdef __SSE2__
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_si64 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddq ((__v1di)__m1, (__v1di)__m2);
}
#endif
/* Add the 8-bit values in M1 to the 8-bit values in M2 using signed
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddsb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddsb (__m64 __m1, __m64 __m2)
{
return _mm_adds_pi8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2 using signed
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddsw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddsw (__m64 __m1, __m64 __m2)
{
return _mm_adds_pi16 (__m1, __m2);
}
/* Add the 8-bit values in M1 to the 8-bit values in M2 using unsigned
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pu8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddusb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddusb (__m64 __m1, __m64 __m2)
{
return _mm_adds_pu8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2 using unsigned
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pu16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_paddusw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddusw (__m64 __m1, __m64 __m2)
{
return _mm_adds_pu16 (__m1, __m2);
}
/* Subtract the 8-bit values in M2 from the 8-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubb (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubw (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi16 (__m1, __m2);
}
/* Subtract the 32-bit values in M2 from the 32-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubd ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubd (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi32 (__m1, __m2);
}
/* Add the 64-bit values in M1 to the 64-bit values in M2. */
#ifdef __SSE2__
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_si64 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubq ((__v1di)__m1, (__v1di)__m2);
}
#endif
/* Subtract the 8-bit values in M2 from the 8-bit values in M1 using signed
saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubsb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubsb (__m64 __m1, __m64 __m2)
{
return _mm_subs_pi8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1 using
signed saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubsw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubsw (__m64 __m1, __m64 __m2)
{
return _mm_subs_pi16 (__m1, __m2);
}
/* Subtract the 8-bit values in M2 from the 8-bit values in M1 using
unsigned saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pu8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubusb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubusb (__m64 __m1, __m64 __m2)
{
return _mm_subs_pu8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1 using
unsigned saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pu16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_psubusw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubusw (__m64 __m1, __m64 __m2)
{
return _mm_subs_pu16 (__m1, __m2);
}
/* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing
four 32-bit intermediate results, which are then summed by pairs to
produce two 32-bit results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_madd_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pmaddwd ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmaddwd (__m64 __m1, __m64 __m2)
{
return _mm_madd_pi16 (__m1, __m2);
}
/* Multiply four signed 16-bit values in M1 by four signed 16-bit values in
M2 and produce the high 16 bits of the 32-bit results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mulhi_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pmulhw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmulhw (__m64 __m1, __m64 __m2)
{
return _mm_mulhi_pi16 (__m1, __m2);
}
/* Multiply four 16-bit values in M1 by four 16-bit values in M2 and produce
the low 16 bits of the results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mullo_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pmullw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmullw (__m64 __m1, __m64 __m2)
{
return _mm_mullo_pi16 (__m1, __m2);
}
/* Shift four 16-bit values in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_pi16 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psllw ((__v4hi)__m, (__v4hi)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllw (__m64 __m, __m64 __count)
{
return _mm_sll_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_pi16 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psllwi ((__v4hi)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllwi (__m64 __m, int __count)
{
return _mm_slli_pi16 (__m, __count);
}
/* Shift two 32-bit values in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_pi32 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_pslld ((__v2si)__m, (__v2si)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pslld (__m64 __m, __m64 __count)
{
return _mm_sll_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_pi32 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_pslldi ((__v2si)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pslldi (__m64 __m, int __count)
{
return _mm_slli_pi32 (__m, __count);
}
/* Shift the 64-bit value in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_si64 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psllq ((__v1di)__m, (__v1di)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllq (__m64 __m, __m64 __count)
{
return _mm_sll_si64 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_si64 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psllqi ((__v1di)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllqi (__m64 __m, int __count)
{
return _mm_slli_si64 (__m, __count);
}
/* Shift four 16-bit values in M right by COUNT; shift in the sign bit. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sra_pi16 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psraw ((__v4hi)__m, (__v4hi)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psraw (__m64 __m, __m64 __count)
{
return _mm_sra_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srai_pi16 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psrawi ((__v4hi)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrawi (__m64 __m, int __count)
{
return _mm_srai_pi16 (__m, __count);
}
/* Shift two 32-bit values in M right by COUNT; shift in the sign bit. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sra_pi32 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psrad ((__v2si)__m, (__v2si)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrad (__m64 __m, __m64 __count)
{
return _mm_sra_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srai_pi32 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psradi ((__v2si)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psradi (__m64 __m, int __count)
{
return _mm_srai_pi32 (__m, __count);
}
/* Shift four 16-bit values in M right by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_pi16 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psrlw ((__v4hi)__m, (__v4hi)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlw (__m64 __m, __m64 __count)
{
return _mm_srl_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_pi16 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psrlwi ((__v4hi)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlwi (__m64 __m, int __count)
{
return _mm_srli_pi16 (__m, __count);
}
/* Shift two 32-bit values in M right by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_pi32 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psrld ((__v2si)__m, (__v2si)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrld (__m64 __m, __m64 __count)
{
return _mm_srl_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_pi32 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psrldi ((__v2si)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrldi (__m64 __m, int __count)
{
return _mm_srli_pi32 (__m, __count);
}
/* Shift the 64-bit value in M left by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_si64 (__m64 __m, __m64 __count)
{
return (__m64) __builtin_ia32_psrlq ((__v1di)__m, (__v1di)__count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlq (__m64 __m, __m64 __count)
{
return _mm_srl_si64 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_si64 (__m64 __m, int __count)
{
return (__m64) __builtin_ia32_psrlqi ((__v1di)__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlqi (__m64 __m, int __count)
{
return _mm_srli_si64 (__m, __count);
}
/* Bit-wise AND the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_and_si64 (__m64 __m1, __m64 __m2)
{
return __builtin_ia32_pand (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pand (__m64 __m1, __m64 __m2)
{
return _mm_and_si64 (__m1, __m2);
}
/* Bit-wise complement the 64-bit value in M1 and bit-wise AND it with the
64-bit value in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_andnot_si64 (__m64 __m1, __m64 __m2)
{
return __builtin_ia32_pandn (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pandn (__m64 __m1, __m64 __m2)
{
return _mm_andnot_si64 (__m1, __m2);
}
/* Bit-wise inclusive OR the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_or_si64 (__m64 __m1, __m64 __m2)
{
return __builtin_ia32_por (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_por (__m64 __m1, __m64 __m2)
{
return _mm_or_si64 (__m1, __m2);
}
/* Bit-wise exclusive OR the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_xor_si64 (__m64 __m1, __m64 __m2)
{
return __builtin_ia32_pxor (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pxor (__m64 __m1, __m64 __m2)
{
return _mm_xor_si64 (__m1, __m2);
}
/* Compare eight 8-bit values. The result of the comparison is 0xFF if the
test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpeqb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqb (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi8 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi8 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpgtb ((__v8qi)__m1, (__v8qi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtb (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi8 (__m1, __m2);
}
/* Compare four 16-bit values. The result of the comparison is 0xFFFF if
the test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpeqw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqw (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi16 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi16 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpgtw ((__v4hi)__m1, (__v4hi)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtw (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi16 (__m1, __m2);
}
/* Compare two 32-bit values. The result of the comparison is 0xFFFFFFFF if
the test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpeqd ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqd (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi32 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi32 (__m64 __m1, __m64 __m2)
{
return (__m64) __builtin_ia32_pcmpgtd ((__v2si)__m1, (__v2si)__m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtd (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi32 (__m1, __m2);
}
/* Creates a 64-bit zero. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setzero_si64 (void)
{
return (__m64)0LL;
}
/* Creates a vector of two 32-bit values; I0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi32 (int __i1, int __i0)
{
return (__m64) __builtin_ia32_vec_init_v2si (__i0, __i1);
}
/* Creates a vector of four 16-bit values; W0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi16 (short __w3, short __w2, short __w1, short __w0)
{
return (__m64) __builtin_ia32_vec_init_v4hi (__w0, __w1, __w2, __w3);
}
/* Creates a vector of eight 8-bit values; B0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi8 (char __b7, char __b6, char __b5, char __b4,
char __b3, char __b2, char __b1, char __b0)
{
return (__m64) __builtin_ia32_vec_init_v8qi (__b0, __b1, __b2, __b3,
__b4, __b5, __b6, __b7);
}
/* Similar, but with the arguments in reverse order. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi32 (int __i0, int __i1)
{
return _mm_set_pi32 (__i1, __i0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi16 (short __w0, short __w1, short __w2, short __w3)
{
return _mm_set_pi16 (__w3, __w2, __w1, __w0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi8 (char __b0, char __b1, char __b2, char __b3,
char __b4, char __b5, char __b6, char __b7)
{
return _mm_set_pi8 (__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0);
}
/* Creates a vector of two 32-bit values, both elements containing I. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi32 (int __i)
{
return _mm_set_pi32 (__i, __i);
}
/* Creates a vector of four 16-bit values, all elements containing W. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi16 (short __w)
{
return _mm_set_pi16 (__w, __w, __w, __w);
}
/* Creates a vector of eight 8-bit values, all elements containing B. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi8 (char __b)
{
return _mm_set_pi8 (__b, __b, __b, __b, __b, __b, __b, __b);
}
#endif /* __MMX__ */
#endif /* _MMINTRIN_H_INCLUDED */
Zerion Mini Shell 1.0