Mini Shell
/* Copyright (C) 2007-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Implemented from the specification included in the Intel C++ Compiler
User Guide and Reference, version 10.0. */
#ifndef _SMMINTRIN_H_INCLUDED
#define _SMMINTRIN_H_INCLUDED
#ifndef __SSE4_1__
# error "SSE4.1 instruction set not enabled"
#else
/* We need definitions from the SSSE3, SSE3, SSE2 and SSE header
files. */
#include <tmmintrin.h>
/* Rounding mode macros. */
#define _MM_FROUND_TO_NEAREST_INT 0x00
#define _MM_FROUND_TO_NEG_INF 0x01
#define _MM_FROUND_TO_POS_INF 0x02
#define _MM_FROUND_TO_ZERO 0x03
#define _MM_FROUND_CUR_DIRECTION 0x04
#define _MM_FROUND_RAISE_EXC 0x00
#define _MM_FROUND_NO_EXC 0x08
#define _MM_FROUND_NINT \
(_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
#define _MM_FROUND_FLOOR \
(_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
#define _MM_FROUND_CEIL \
(_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
#define _MM_FROUND_TRUNC \
(_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
#define _MM_FROUND_RINT \
(_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
#define _MM_FROUND_NEARBYINT \
(_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
/* Test Instruction */
/* Packed integer 128-bit bitwise comparison. Return 1 if
(__V & __M) == 0. */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_testz_si128 (__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestz128 ((__v2di)__M, (__v2di)__V);
}
/* Packed integer 128-bit bitwise comparison. Return 1 if
(__V & ~__M) == 0. */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_testc_si128 (__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestc128 ((__v2di)__M, (__v2di)__V);
}
/* Packed integer 128-bit bitwise comparison. Return 1 if
(__V & __M) != 0 && (__V & ~__M) != 0. */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_testnzc_si128 (__m128i __M, __m128i __V)
{
return __builtin_ia32_ptestnzc128 ((__v2di)__M, (__v2di)__V);
}
/* Macros for packed integer 128-bit comparison intrinsics. */
#define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
#define _mm_test_all_ones(V) \
_mm_testc_si128 ((V), _mm_cmpeq_epi32 ((V), (V)))
#define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128 ((M), (V))
/* Packed/scalar double precision floating point rounding. */
#ifdef __OPTIMIZE__
extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_round_pd (__m128d __V, const int __M)
{
return (__m128d) __builtin_ia32_roundpd ((__v2df)__V, __M);
}
extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_round_sd(__m128d __D, __m128d __V, const int __M)
{
return (__m128d) __builtin_ia32_roundsd ((__v2df)__D,
(__v2df)__V,
__M);
}
#else
#define _mm_round_pd(V, M) \
((__m128d) __builtin_ia32_roundpd ((__v2df)(__m128d)(V), (int)(M)))
#define _mm_round_sd(D, V, M) \
((__m128d) __builtin_ia32_roundsd ((__v2df)(__m128d)(D), \
(__v2df)(__m128d)(V), (int)(M)))
#endif
/* Packed/scalar single precision floating point rounding. */
#ifdef __OPTIMIZE__
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_round_ps (__m128 __V, const int __M)
{
return (__m128) __builtin_ia32_roundps ((__v4sf)__V, __M);
}
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_round_ss (__m128 __D, __m128 __V, const int __M)
{
return (__m128) __builtin_ia32_roundss ((__v4sf)__D,
(__v4sf)__V,
__M);
}
#else
#define _mm_round_ps(V, M) \
((__m128) __builtin_ia32_roundps ((__v4sf)(__m128)(V), (int)(M)))
#define _mm_round_ss(D, V, M) \
((__m128) __builtin_ia32_roundss ((__v4sf)(__m128)(D), \
(__v4sf)(__m128)(V), (int)(M)))
#endif
/* Macros for ceil/floor intrinsics. */
#define _mm_ceil_pd(V) _mm_round_pd ((V), _MM_FROUND_CEIL)
#define _mm_ceil_sd(D, V) _mm_round_sd ((D), (V), _MM_FROUND_CEIL)
#define _mm_floor_pd(V) _mm_round_pd((V), _MM_FROUND_FLOOR)
#define _mm_floor_sd(D, V) _mm_round_sd ((D), (V), _MM_FROUND_FLOOR)
#define _mm_ceil_ps(V) _mm_round_ps ((V), _MM_FROUND_CEIL)
#define _mm_ceil_ss(D, V) _mm_round_ss ((D), (V), _MM_FROUND_CEIL)
#define _mm_floor_ps(V) _mm_round_ps ((V), _MM_FROUND_FLOOR)
#define _mm_floor_ss(D, V) _mm_round_ss ((D), (V), _MM_FROUND_FLOOR)
/* SSE4.1 */
/* Integer blend instructions - select data from 2 sources using
constant/variable mask. */
#ifdef __OPTIMIZE__
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blend_epi16 (__m128i __X, __m128i __Y, const int __M)
{
return (__m128i) __builtin_ia32_pblendw128 ((__v8hi)__X,
(__v8hi)__Y,
__M);
}
#else
#define _mm_blend_epi16(X, Y, M) \
((__m128i) __builtin_ia32_pblendw128 ((__v8hi)(__m128i)(X), \
(__v8hi)(__m128i)(Y), (int)(M)))
#endif
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blendv_epi8 (__m128i __X, __m128i __Y, __m128i __M)
{
return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__X,
(__v16qi)__Y,
(__v16qi)__M);
}
/* Single precision floating point blend instructions - select data
from 2 sources using constant/variable mask. */
#ifdef __OPTIMIZE__
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blend_ps (__m128 __X, __m128 __Y, const int __M)
{
return (__m128) __builtin_ia32_blendps ((__v4sf)__X,
(__v4sf)__Y,
__M);
}
#else
#define _mm_blend_ps(X, Y, M) \
((__m128) __builtin_ia32_blendps ((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (int)(M)))
#endif
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blendv_ps (__m128 __X, __m128 __Y, __m128 __M)
{
return (__m128) __builtin_ia32_blendvps ((__v4sf)__X,
(__v4sf)__Y,
(__v4sf)__M);
}
/* Double precision floating point blend instructions - select data
from 2 sources using constant/variable mask. */
#ifdef __OPTIMIZE__
extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blend_pd (__m128d __X, __m128d __Y, const int __M)
{
return (__m128d) __builtin_ia32_blendpd ((__v2df)__X,
(__v2df)__Y,
__M);
}
#else
#define _mm_blend_pd(X, Y, M) \
((__m128d) __builtin_ia32_blendpd ((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (int)(M)))
#endif
extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_blendv_pd (__m128d __X, __m128d __Y, __m128d __M)
{
return (__m128d) __builtin_ia32_blendvpd ((__v2df)__X,
(__v2df)__Y,
(__v2df)__M);
}
/* Dot product instructions with mask-defined summing and zeroing parts
of result. */
#ifdef __OPTIMIZE__
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_dp_ps (__m128 __X, __m128 __Y, const int __M)
{
return (__m128) __builtin_ia32_dpps ((__v4sf)__X,
(__v4sf)__Y,
__M);
}
extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_dp_pd (__m128d __X, __m128d __Y, const int __M)
{
return (__m128d) __builtin_ia32_dppd ((__v2df)__X,
(__v2df)__Y,
__M);
}
#else
#define _mm_dp_ps(X, Y, M) \
((__m128) __builtin_ia32_dpps ((__v4sf)(__m128)(X), \
(__v4sf)(__m128)(Y), (int)(M)))
#define _mm_dp_pd(X, Y, M) \
((__m128d) __builtin_ia32_dppd ((__v2df)(__m128d)(X), \
(__v2df)(__m128d)(Y), (int)(M)))
#endif
/* Packed integer 64-bit comparison, zeroing or filling with ones
corresponding parts of result. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_epi64 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pcmpeqq ((__v2di)__X, (__v2di)__Y);
}
/* Min/max packed integer instructions. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_epi8 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pminsb128 ((__v16qi)__X, (__v16qi)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_epi8 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi)__X, (__v16qi)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_epu16 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pminuw128 ((__v8hi)__X, (__v8hi)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_epu16 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi)__X, (__v8hi)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pminsd128 ((__v4si)__X, (__v4si)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si)__X, (__v4si)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_epu32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pminud128 ((__v4si)__X, (__v4si)__Y);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_epu32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmaxud128 ((__v4si)__X, (__v4si)__Y);
}
/* Packed integer 32-bit multiplication with truncation of upper
halves of results. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mullo_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X, (__v4si)__Y);
}
/* Packed integer 32-bit multiplication of 2 pairs of operands
with two 64-bit results. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mul_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__X, (__v4si)__Y);
}
/* Insert single precision float into packed single precision array
element selected by index N. The bits [7-6] of N define S
index, the bits [5-4] define D index, and bits [3-0] define
zeroing mask for D. */
#ifdef __OPTIMIZE__
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_insert_ps (__m128 __D, __m128 __S, const int __N)
{
return (__m128) __builtin_ia32_insertps128 ((__v4sf)__D,
(__v4sf)__S,
__N);
}
#else
#define _mm_insert_ps(D, S, N) \
((__m128) __builtin_ia32_insertps128 ((__v4sf)(__m128)(D), \
(__v4sf)(__m128)(S), (int)(N)))
#endif
/* Helper macro to create the N value for _mm_insert_ps. */
#define _MM_MK_INSERTPS_NDX(S, D, M) (((S) << 6) | ((D) << 4) | (M))
/* Extract binary representation of single precision float from packed
single precision array element of X selected by index N. */
#ifdef __OPTIMIZE__
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_extract_ps (__m128 __X, const int __N)
{
union { int i; float f; } __tmp;
__tmp.f = __builtin_ia32_vec_ext_v4sf ((__v4sf)__X, __N);
return __tmp.i;
}
#else
#define _mm_extract_ps(X, N) \
(__extension__ \
({ \
union { int i; float f; } __tmp; \
__tmp.f = __builtin_ia32_vec_ext_v4sf ((__v4sf)(__m128)(X), (int)(N)); \
__tmp.i; \
}))
#endif
/* Extract binary representation of single precision float into
D from packed single precision array element of S selected
by index N. */
#define _MM_EXTRACT_FLOAT(D, S, N) \
{ (D) = __builtin_ia32_vec_ext_v4sf ((__v4sf)(S), (N)); }
/* Extract specified single precision float element into the lower
part of __m128. */
#define _MM_PICK_OUT_PS(X, N) \
_mm_insert_ps (_mm_setzero_ps (), (X), \
_MM_MK_INSERTPS_NDX ((N), 0, 0x0e))
/* Insert integer, S, into packed integer array element of D
selected by index N. */
#ifdef __OPTIMIZE__
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_insert_epi8 (__m128i __D, int __S, const int __N)
{
return (__m128i) __builtin_ia32_vec_set_v16qi ((__v16qi)__D,
__S, __N);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_insert_epi32 (__m128i __D, int __S, const int __N)
{
return (__m128i) __builtin_ia32_vec_set_v4si ((__v4si)__D,
__S, __N);
}
#ifdef __x86_64__
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_insert_epi64 (__m128i __D, long long __S, const int __N)
{
return (__m128i) __builtin_ia32_vec_set_v2di ((__v2di)__D,
__S, __N);
}
#endif
#else
#define _mm_insert_epi8(D, S, N) \
((__m128i) __builtin_ia32_vec_set_v16qi ((__v16qi)(__m128i)(D), \
(int)(S), (int)(N)))
#define _mm_insert_epi32(D, S, N) \
((__m128i) __builtin_ia32_vec_set_v4si ((__v4si)(__m128i)(D), \
(int)(S), (int)(N)))
#ifdef __x86_64__
#define _mm_insert_epi64(D, S, N) \
((__m128i) __builtin_ia32_vec_set_v2di ((__v2di)(__m128i)(D), \
(long long)(S), (int)(N)))
#endif
#endif
/* Extract integer from packed integer array element of X selected by
index N. */
#ifdef __OPTIMIZE__
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_extract_epi8 (__m128i __X, const int __N)
{
return (unsigned char) __builtin_ia32_vec_ext_v16qi ((__v16qi)__X, __N);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_extract_epi32 (__m128i __X, const int __N)
{
return __builtin_ia32_vec_ext_v4si ((__v4si)__X, __N);
}
#ifdef __x86_64__
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_extract_epi64 (__m128i __X, const int __N)
{
return __builtin_ia32_vec_ext_v2di ((__v2di)__X, __N);
}
#endif
#else
#define _mm_extract_epi8(X, N) \
((int) (unsigned char) __builtin_ia32_vec_ext_v16qi ((__v16qi)(__m128i)(X), (int)(N)))
#define _mm_extract_epi32(X, N) \
((int) __builtin_ia32_vec_ext_v4si ((__v4si)(__m128i)(X), (int)(N)))
#ifdef __x86_64__
#define _mm_extract_epi64(X, N) \
((long long) __builtin_ia32_vec_ext_v2di ((__v2di)(__m128i)(X), (int)(N)))
#endif
#endif
/* Return horizontal packed word minimum and its index in bits [15:0]
and bits [18:16] respectively. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_minpos_epu16 (__m128i __X)
{
return (__m128i) __builtin_ia32_phminposuw128 ((__v8hi)__X);
}
/* Packed integer sign-extension. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi8_epi32 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxbd128 ((__v16qi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi16_epi32 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxwd128 ((__v8hi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi8_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxbq128 ((__v16qi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi32_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxdq128 ((__v4si)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi16_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxwq128 ((__v8hi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepi8_epi16 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovsxbw128 ((__v16qi)__X);
}
/* Packed integer zero-extension. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu8_epi32 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxbd128 ((__v16qi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu16_epi32 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxwd128 ((__v8hi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu8_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxbq128 ((__v16qi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu32_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxdq128 ((__v4si)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu16_epi64 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxwq128 ((__v8hi)__X);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtepu8_epi16 (__m128i __X)
{
return (__m128i) __builtin_ia32_pmovzxbw128 ((__v16qi)__X);
}
/* Pack 8 double words from 2 operands into 8 words of result with
unsigned saturation. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packus_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_packusdw128 ((__v4si)__X, (__v4si)__Y);
}
/* Sum absolute 8-bit integer difference of adjacent groups of 4
byte integers in the first 2 operands. Starting offsets within
operands are determined by the 3rd mask operand. */
#ifdef __OPTIMIZE__
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mpsadbw_epu8 (__m128i __X, __m128i __Y, const int __M)
{
return (__m128i) __builtin_ia32_mpsadbw128 ((__v16qi)__X,
(__v16qi)__Y, __M);
}
#else
#define _mm_mpsadbw_epu8(X, Y, M) \
((__m128i) __builtin_ia32_mpsadbw128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#endif
/* Load double quadword using non-temporal aligned hint. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_stream_load_si128 (__m128i *__X)
{
return (__m128i) __builtin_ia32_movntdqa ((__v2di *) __X);
}
#ifdef __SSE4_2__
/* These macros specify the source data format. */
#define _SIDD_UBYTE_OPS 0x00
#define _SIDD_UWORD_OPS 0x01
#define _SIDD_SBYTE_OPS 0x02
#define _SIDD_SWORD_OPS 0x03
/* These macros specify the comparison operation. */
#define _SIDD_CMP_EQUAL_ANY 0x00
#define _SIDD_CMP_RANGES 0x04
#define _SIDD_CMP_EQUAL_EACH 0x08
#define _SIDD_CMP_EQUAL_ORDERED 0x0c
/* These macros specify the polarity. */
#define _SIDD_POSITIVE_POLARITY 0x00
#define _SIDD_NEGATIVE_POLARITY 0x10
#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
#define _SIDD_MASKED_NEGATIVE_POLARITY 0x30
/* These macros specify the output selection in _mm_cmpXstri (). */
#define _SIDD_LEAST_SIGNIFICANT 0x00
#define _SIDD_MOST_SIGNIFICANT 0x40
/* These macros specify the output selection in _mm_cmpXstrm (). */
#define _SIDD_BIT_MASK 0x00
#define _SIDD_UNIT_MASK 0x40
/* Intrinsics for text/string processing. */
#ifdef __OPTIMIZE__
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistrm (__m128i __X, __m128i __Y, const int __M)
{
return (__m128i) __builtin_ia32_pcmpistrm128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistri (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistri128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestrm (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return (__m128i) __builtin_ia32_pcmpestrm128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestri (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestri128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
#else
#define _mm_cmpistrm(X, Y, M) \
((__m128i) __builtin_ia32_pcmpistrm128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpistri(X, Y, M) \
((int) __builtin_ia32_pcmpistri128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpestrm(X, LX, Y, LY, M) \
((__m128i) __builtin_ia32_pcmpestrm128 ((__v16qi)(__m128i)(X), \
(int)(LX), (__v16qi)(__m128i)(Y), \
(int)(LY), (int)(M)))
#define _mm_cmpestri(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestri128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#endif
/* Intrinsics for text/string processing and reading values of
EFlags. */
#ifdef __OPTIMIZE__
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistra (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistria128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistrc (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistric128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistro (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistrio128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistrs (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistris128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpistrz (__m128i __X, __m128i __Y, const int __M)
{
return __builtin_ia32_pcmpistriz128 ((__v16qi)__X,
(__v16qi)__Y,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestra (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestria128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestrc (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestric128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestro (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestrio128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestrs (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestris128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpestrz (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M)
{
return __builtin_ia32_pcmpestriz128 ((__v16qi)__X, __LX,
(__v16qi)__Y, __LY,
__M);
}
#else
#define _mm_cmpistra(X, Y, M) \
((int) __builtin_ia32_pcmpistria128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpistrc(X, Y, M) \
((int) __builtin_ia32_pcmpistric128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpistro(X, Y, M) \
((int) __builtin_ia32_pcmpistrio128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpistrs(X, Y, M) \
((int) __builtin_ia32_pcmpistris128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpistrz(X, Y, M) \
((int) __builtin_ia32_pcmpistriz128 ((__v16qi)(__m128i)(X), \
(__v16qi)(__m128i)(Y), (int)(M)))
#define _mm_cmpestra(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestria128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#define _mm_cmpestrc(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestric128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#define _mm_cmpestro(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestrio128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#define _mm_cmpestrs(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestris128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#define _mm_cmpestrz(X, LX, Y, LY, M) \
((int) __builtin_ia32_pcmpestriz128 ((__v16qi)(__m128i)(X), (int)(LX), \
(__v16qi)(__m128i)(Y), (int)(LY), \
(int)(M)))
#endif
/* Packed integer 64-bit comparison, zeroing or filling with ones
corresponding parts of result. */
extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_epi64 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pcmpgtq ((__v2di)__X, (__v2di)__Y);
}
#ifdef __POPCNT__
#include <popcntintrin.h>
#endif
/* Accumulate CRC32 (polynomial 0x11EDC6F41) value. */
extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_crc32_u8 (unsigned int __C, unsigned char __V)
{
return __builtin_ia32_crc32qi (__C, __V);
}
extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_crc32_u16 (unsigned int __C, unsigned short __V)
{
return __builtin_ia32_crc32hi (__C, __V);
}
extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_crc32_u32 (unsigned int __C, unsigned int __V)
{
return __builtin_ia32_crc32si (__C, __V);
}
#ifdef __x86_64__
extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_crc32_u64 (unsigned long long __C, unsigned long long __V)
{
return __builtin_ia32_crc32di (__C, __V);
}
#endif
#endif /* __SSE4_2__ */
#endif /* __SSE4_1__ */
#endif /* _SMMINTRIN_H_INCLUDED */
Zerion Mini Shell 1.0