Mini Shell
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import math
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, rsa
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding, MGF1, OAEP, PKCS1v15, PSS, calculate_max_pss_salt_length
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
RSAPrivateKeyWithSerialization, RSAPublicKeyWithSerialization
)
def _get_rsa_pss_salt_length(pss, key, hash_algorithm):
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
return calculate_max_pss_salt_length(key, hash_algorithm)
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
if not backend.rsa_padding_supported(padding):
raise UnsupportedAlgorithm(
"This combination of padding and hash algorithm is not "
"supported by this backend.",
_Reasons.UNSUPPORTED_PADDING
)
if padding._label is not None and padding._label != b"":
raise ValueError("This backend does not support OAEP labels.")
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING
)
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
key._evp_pkey, backend._ffi.NULL
)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(buf_size > 0)
if (
isinstance(padding, OAEP) and
backend._lib.Cryptography_HAS_RSA_OAEP_MD
):
mgf1_md = backend._lib.EVP_get_digestbyname(
padding._mgf._algorithm.name.encode("ascii"))
backend.openssl_assert(mgf1_md != backend._ffi.NULL)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
oaep_md = backend._lib.EVP_get_digestbyname(
padding._algorithm.name.encode("ascii"))
backend.openssl_assert(oaep_md != backend._ffi.NULL)
res = backend._lib.EVP_PKEY_CTX_set_rsa_oaep_md(pkey_ctx, oaep_md)
backend.openssl_assert(res > 0)
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("unsigned char[]", buf_size)
res = crypt(pkey_ctx, buf, outlen, data, len(data))
if res <= 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:outlen[0]]
def _handle_rsa_enc_dec_error(backend, key):
errors = backend._consume_errors()
assert errors
assert errors[0].lib == backend._lib.ERR_LIB_RSA
if isinstance(key, _RSAPublicKey):
assert (errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError(
"Data too long for key size. Encrypt less data or use a "
"larger key size."
)
else:
decoding_errors = [
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01,
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02,
backend._lib.RSA_R_OAEP_DECODING_ERROR,
# Though this error looks similar to the
# RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE, this occurs on decrypts,
# rather than on encrypts
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_MODULUS,
]
if backend._lib.Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR:
decoding_errors.append(backend._lib.RSA_R_PKCS_DECODING_ERROR)
assert errors[0].reason in decoding_errors
raise ValueError("Decryption failed.")
def _rsa_sig_determine_padding(backend, key, padding, algorithm):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
pkey_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(pkey_size > 0)
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError("Digest too large for key size. Use a larger "
"key or different digest.")
if not backend._pss_mgf1_hash_supported(padding._mgf._algorithm):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
padding_enum = backend._lib.RSA_PKCS1_PSS_PADDING
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
return padding_enum
def _rsa_sig_sign(backend, padding, padding_enum, algorithm, private_key,
data):
evp_md = backend._lib.EVP_get_digestbyname(
algorithm.name.encode("ascii"))
backend.openssl_assert(evp_md != backend._ffi.NULL)
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
private_key._evp_pkey, backend._ffi.NULL
)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = backend._lib.EVP_PKEY_sign_init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
backend.openssl_assert(res > 0)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
if isinstance(padding, PSS):
res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
padding,
private_key,
algorithm,
)
)
backend.openssl_assert(res > 0)
if backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = backend._lib.EVP_get_digestbyname(
padding._mgf._algorithm.name.encode("ascii"))
backend.openssl_assert(
mgf1_md != backend._ffi.NULL
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
backend.openssl_assert(res > 0)
buflen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_sign(
pkey_ctx,
backend._ffi.NULL,
buflen,
data,
len(data)
)
backend.openssl_assert(res == 1)
buf = backend._ffi.new("unsigned char[]", buflen[0])
res = backend._lib.EVP_PKEY_sign(
pkey_ctx, buf, buflen, data, len(data))
if res != 1:
errors = backend._consume_errors()
assert errors[0].lib == backend._lib.ERR_LIB_RSA
reason = None
if (errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
reason = ("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
else:
assert (errors[0].reason ==
backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
reason = "Digest too large for key size. Use a larger key."
assert reason is not None
raise ValueError(reason)
return backend._ffi.buffer(buf)[:]
def _rsa_sig_verify(backend, padding, padding_enum, algorithm, public_key,
signature, data):
evp_md = backend._lib.EVP_get_digestbyname(
algorithm.name.encode("ascii"))
backend.openssl_assert(evp_md != backend._ffi.NULL)
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
public_key._evp_pkey, backend._ffi.NULL
)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = backend._lib.EVP_PKEY_verify_init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
backend.openssl_assert(res > 0)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
if isinstance(padding, PSS):
res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
padding,
public_key,
algorithm,
)
)
backend.openssl_assert(res > 0)
if backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = backend._lib.EVP_get_digestbyname(
padding._mgf._algorithm.name.encode("ascii"))
backend.openssl_assert(
mgf1_md != backend._ffi.NULL
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
backend.openssl_assert(res > 0)
res = backend._lib.EVP_PKEY_verify(
pkey_ctx,
signature,
len(signature),
data,
len(data)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
backend.openssl_assert(res >= 0)
if res == 0:
errors = backend._consume_errors()
assert errors
raise InvalidSignature
@utils.register_interface(AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
self._padding_enum = _rsa_sig_determine_padding(
backend, private_key, padding, algorithm
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
return _rsa_sig_sign(
self._backend,
self._padding,
self._padding_enum,
self._algorithm,
self._private_key,
self._hash_ctx.finalize()
)
@utils.register_interface(AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._padding = padding
self._padding_enum = _rsa_sig_determine_padding(
backend, public_key, padding, algorithm
)
padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
return _rsa_sig_verify(
self._backend,
self._padding,
self._padding_enum,
self._algorithm,
self._public_key,
self._signature,
self._hash_ctx.finalize()
)
@utils.register_interface(RSAPrivateKeyWithSerialization)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def signer(self, padding, algorithm):
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = int(math.ceil(self.key_size / 8.0))
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSAPublicKey_dup(self._rsa_cdata)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
return _RSAPublicKey(self._backend, ctx, evp_pkey)
def private_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
d = self._backend._ffi.new("BIGNUM **")
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
dmp1 = self._backend._ffi.new("BIGNUM **")
dmq1 = self._backend._ffi.new("BIGNUM **")
iqmp = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(self._rsa_cdata, n, e, d)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(d[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_factors(self._rsa_cdata, p, q)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_crt_params(
self._rsa_cdata, dmp1, dmq1, iqmp
)
self._backend.openssl_assert(dmp1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(dmq1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(iqmp[0] != self._backend._ffi.NULL)
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
d=self._backend._bn_to_int(d[0]),
dmp1=self._backend._bn_to_int(dmp1[0]),
dmq1=self._backend._bn_to_int(dmq1[0]),
iqmp=self._backend._bn_to_int(iqmp[0]),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._rsa_cdata
)
def sign(self, data, padding, algorithm):
padding_enum = _rsa_sig_determine_padding(
self._backend, self, padding, algorithm
)
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_sign(
self._backend, padding, padding_enum,
algorithm, self, data
)
@utils.register_interface(RSAPublicKeyWithSerialization)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, padding, algorithm):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, e, self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
def public_bytes(self, encoding, format):
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
self._rsa_cdata
)
def verify(self, signature, data, padding, algorithm):
padding_enum = _rsa_sig_determine_padding(
self._backend, self, padding, algorithm
)
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_verify(
self._backend, padding, padding_enum, algorithm, self,
signature, data
)
Zerion Mini Shell 1.0